
1

A Software Quality Model and Metrics
for

Identifying Project Risks and
Assessing Software Quality

Title: A Software Quality Model and Metrics for Identifying Project Risks and
Assessing Software Quality

Presenter: Lawrence E. Hyatt and Linda H. Rosenberg, Ph.D.

Day & Track: Wednesday, April 24, 1996. Track 5.

Keywords: Quality, Metrics, Risk

Abstract: This paper explains a Software Quality Model and then uses it as a basis
for discussions on quality attributes and risks. Risks that can be determined
by a metrics program are identified and classified. The software product
quality attributes are defined and related to the risks. Specific quality
attributes are selected based on their importance to the project and their
ability to be quantified. The risks and quality attributes are used to derive a
core set of metrics relating to the development process and the products,
such as requirement and design documents, code and test plans.
Measurements for each metric are defined and their usability and
applicability discussed.

1.0 Introduction

The National Aeronautics and Space Agency (NASA) is increasingly reliant on software for the
functionality of the systems it develops and uses. The Agency has recognized the importance of
improving the way it develops software, and has adopted a software strategic plan to guide the
improvement process. At the Goddard Space Flight Center (GSFC), the implementation of the
plan has led to the establishment of the Software Assurance Technology Center (SATC), which,
as part of its role of improving the quality of software at GSFC and NASA, has software metrics
as one of its areas of emphasis.

NASA is not alone in attempting to improve the quality of its software; this emphasis can be seen
in almost any organization where software results contribute to success, from programmable
microwaves to watches to toys - quality products depend on quality software. Everyone agrees
that quality is important, but few agree on what quality is. Kitchenham (1989) notes that “quality

2

is hard to define, impossible to measure, easy to recognize”.[7] Gilles states that quality is
“transparent when presented, but easily recognized in its absence”.[5]

In this paper, we will look at a number of perspectives on software quality, and, based on a
description of a typical flight project’s use of software, establish a project manager’s perspective.
We will use that project description and the manager’s view to deduce requirements for a
software quality model. After a review of established models for software quality, their attributes
and metrics, we will present the Software Assurance Technology Center’s model for software
quality, developed at GSFC to meet the needs of NASA software project and program managers.
We will then discuss the use of the model and its metrics for assessing quality and risk.

2.0 Perspectives on Software Quality

Garvin concluded that “quality is a complex and multifaceted concept.” Garvin described quality
from five different perspectives: the transcendental view, that sees quality as something that can
be recognized, but not defined; the user view, which sees quality as fitness for the user’s purpose;
the manufacturers view, which sees quality as conformance to specification; the product view,
which sees quality as tied to inherent characteristics of the product; and the value-based view,
which sees quality as dependent on what a customer is willing to pay for it [4].

In the software development process at GSFC, while quality is seen from all of the above views,
the most important view is that of the project manager. The situation in which the software is
developed and used heavily influences the project manager’s view. Figure 1 shows the process
flow for building a space mission and some of the roles software plays in a space flight project. It
should be noted that the software is integral to the process of developing the system. For
example, the flight software and the test system software must be completed at least to some level
of functionality before the integration and test of the spacecraft can be begun. Similar
dependencies exist in other parts of the system.

3

Bus
Hardware

Flight
Software

Test
System

Instruments -
Hardware &
Software

Ground
System

Bus
Integration

Spacecraft
Integration

System
Integration

Data Analysis
System

Launch
Integration Launch

Figure 1: Process Flow for a Space Mission

Thus the project manager’s view of software quality is pragmatic and relatively simple - high
quality software is software that “works well enough” to serve its intended function and is
software that is “available when needed” to perform that function. The criterion of “Works Well
Enough” includes satisfaction of functional, performance, and interface requirements as well as
the satisfaction of typical “ility” requirements such as reliability, maintainability, reusability and
correctness. The criterion of “Available When Needed” is dependent upon the software’s role in
the system. Delays in availability of some software could delay the whole system and postpone
the most critical date of all - the launch date.

Both of these criteria must be met for the software to be high quality, in fact, when trouble
strikes, many hours are typically spent trading off activities that lead to satisfaction of one criteria
for activities that would satisfy the other. In order to meet schedules, functionality may be
partitioned, with highest priority requirements satisfied in an initial build, with lower priority
requirements to be provided later. “Ility” requirements may also be sacrificed, with the most
common tradeoff to meet schedule a reduction in documentation that will effect future
maintainability and reusability, or a reduction in test time that could affect correctness and
reliability. On the other hand, sometimes the software functionality and or “ility” considerations
are added to in order to offset problems elsewhere in the developing system. Flight software may
have to be both more functional and more reliable to decrease the need for ground system
software to monitor the spacecraft.

Thus the project manager is interested in a “pragmatic” quality model and metrics program, one
that will help in the successful development and operation of a specific system. Any model and
associated metrics program that is to be funded by a project manager must be aimed at
satisfaction of the two criteria and at the identification of risks that they will not be met.

4

3.0 Risk

In the Collegiate Dictionary, Webster defines risk as the possibility of loss or injury, and the
degree of probability of such a loss. Barry Boehm, in his book “Software Risk Management”,
defines risk management as a combination of risk assessment and risk control. Risk assessment
includes identification, analysis, and prioritization; risk control includes management, planning,
resolution and monitoring. The project risk management process may be summarized as
identification of risks, ranking and prioritization of risks, and monitoring risks throughout their
applicable life.

In order to develop a software quality model that is useful in the risk management process, it is
necessary to identify a set of risks that is common to most projects and based on the project
manager’s idea of software quality as described in Section 2.0. Given that definition, the risk
areas are:

• Correctness
• Reliability
• Maintainability
• Reusability
• Schedule

The project manager might have a different prioritization of the listed risks for different segments
of software that are being developed by the project (as shown in Figure 1). For example, a set of
 risks relevant to the flight software might be, in priority order, too many errors (low correctness),
being late (schedule), and not being reusable as a basis for the next flight mission (low reusability).
 For the science analysis software, however, the main risk might be low maintainability (science
software changes frequently), with late delivery a secondary risk.

The needs of risk management place two additional requirements on a quality model. First, the
model must support the quantification of the risks - for example, a numeric definition of the
number and seriousness of the errors that can be remaining in the software before additional
efforts have to be put in place to reduce the risk of low correctness. Second, the model and
metrics must support the overall assessment of the project risk. That is, the risk measures must be
capable of being “rolled up” into an overall measure of risk for a given software segment and for
the whole project.

Once the relevant risks for a project are identified and quantified, a classification process must be
defined. While it would be nice to be numeric and quantify the risk and probability of occurrence,
the state of the art does not currently permit this. The SATC Model classifies risk level by the
action required. It leads to the following classifications for risk levels:

5

LOW - Very likely to meet objectives if current trend continues. Does not need
contingency plans.

MODERATE - Based on current trend, likely to meet objectives. Should have
contingency plans.

HIGH - Not likely to meet objectives based on current trend. Implement contingency
plans immediately.

The model does not directly predict the risk classification in most cases. Determination of the risk
classification for a specific risk may involve a number of metrics, and often needs an experienced
analyst to evaluate the data and assign the risk class.

The SATC has found that how the risk information is presented is important. In presentations to
management, especially upper levels, a version of the “fever chart” has been found to be effective.
 However, since the colors used in fever charts (green, yellow, red) do not reproduce well, the
symbols shown in Figure 2 are used. These symbols follow user interface guidelines using the
darkest shade for the most important concept and a relevant symbol ($) to reinforce the meaning.

$$$
Low Moderate High

Risk Level

 Figure 2: Risk Indicators

4.0 Software Quality Models

As defined in Section 3, project managers need a comprehensive model for the evaluation of
quality and the management of risk. There are many models of software product quality that
define software quality attributes. Three often used models are discussed here as examples.
McCall’s model of software quality (The GE Model, 1977) incorporates 11 criteria encompassing
product operation, product revision, and product transition. Boehm’s model (1978) is based on a
wider range of characteristics and incorporates 19 criteria.[2] The criteria in these models are not
independent; they interact with each other and often cause conflict, especially when software
providers try to incorporate them into the software development process. ISO 9126 incorporates
six quality goals, each goal having a large number of attributes.

The criteria and goals1 defined in each of these models are listed in Table 1. Note that the ISO
Model includes a number of criteria under its goal of maintainability.

1 These three models and other references to software quality use the terms criteria, goals and
attributes interchangeably. To avoid confusion, we will use the terminology in ISO 9126 - goal,
attribute, metric.

6

Criteria/Goals McCall, 1977 Boehm, 1978 ISO 9126, 1993

Correctness X X maintainability
Reliability X X X
Integrity X X
Usability X X X
Efficiency X X X
Maintainability X X X
Testability X maintainability
Interoperability X
Flexibility X X
Reusability X X
Portability X X X
Clarity X
Modifiability X maintainability
Documentation X
Resilience X
Understandability X
Validity X maintainability
Functionality X
Generality X
Economy X

Table 1: Software Quality Models

There are a number of difficulties in the direct application of any of the three models above. First,
many of the criteria (goals) suggested seem, in a specific situation, to be items that should be
included in the functional, performance, and interface requirements for the software as opposed to
quality indicators to be measured by a metrics program. That is, the criteria “interoperability”
will have a specific meaning defined in the interface requirements for the software and the
software’s satisfaction of that criteria will be determined by testing. Portability needs will also be
specified and tested. Efficiency will be determined by the satisfaction of performance
requirements.

Second, the models are static, that is they do not describe how to project the metrics from current
values to values at subsequent project milestones. The projections are needed to determine the
risk of the attributes of the software satisfying the manager’s criterion for success. It is important
to be able to relate software metrics to progress and to expected values at the time of delivery of
the software.

Finally, the models do not give any guidance as to the use of the metrics and attributes in the
identification and classification of risk.

7

5.0 SATC Software Quality Model

It is very difficult to convince GSFC project managers to dedicate part of a mission’s budget for a
metrics program, even one relating to quality and risk. The project has a long list of things that it
would like to do to enhance the primary purpose of the mission (i.e., to gather and analyze
scientific data), and the competition for funds is intense.

As part of its mission to improve the quality of NASA software, the SATC is assisting software
managers in establishing metrics programs that meet their needs with minimal costs, and in
interpreting the resulting metrics in the context of the supported projects. Using the results of
these metric programs and discussions with projects as a basis, the SATC is currently defining and
testing a quality model for software. Our experience indicates that the project manager’s
pragmatic view of software quality cannot be evaluated using only software product goals and
attributes; goals and attributes for the development process through the life cycle must also be
evaluated. Questions of interest are of the nature:

• Can we identify early in the development process the risks to successful completion of the
software when needed?

• Will we achieve adequate correctness/reliability with the test resources and schedule
currently allocated?

• What sections of the code are of the highest risk as reliability and maintainability
problems?

• What constitutes code that is acceptable for reuse on other missions?

In order to convince managers to incorporate a software quality metrics program, we must show
them tangible benefits, i.e., increased information about the development process and its risks,
increased confidence (reduced risk) that the mission software will be usable when completed, or a
real cost saving such as decreased test time. That is, in the ISO terminology, we must select a set
of goals that relate to project management needs and the two questions of working well enough
and being available when needed.

Following the structure of ISO 9126, the SATC model defines a set of goals that are important in
the GSFC environment. The goals are then related to software product and process attributes
that allow indications of the probability of success in meeting the goals. A set of metrics is chosen
or developed that measure the selected attributes. The goals relate to the project manager’s two
questions about “working well enough” and being “available on time”. From the pragmatic
description of software quality, we derive four goals:

1. Requirements Quality
2. Product Quality
3. Implementation Effectivity
4. Testing Effectivity

8

The set of goals for software quality selected by the SATC encompass process oriented indicators
of quality as well as the more traditional product oriented ones.

The model’s goals must be capable of being evaluated by a set of attributes that help to define and
classify risks. The attributes must be “measurable” by a set of metrics that is possible to collect
within the confines of the software development process and that will yield the desired
information. The goals, attributes, and metrics are explained in detail in the next section.

6.0 SATC Quality Model and Risk Evaluation

Once the goals of the software managers are defined and the attributes specified, related metrics
must be selected. The SATC has defined a core metric set to give a common basis for evaluating
the selected attributes of software. These metrics correlate to the quality attributes and are
applicable to the goals. The metrics are applicable throughout the life cycle, including the early
phases. This is very critical to project management - to assist in identifying potential problems
early so they can be corrected or monitored.

The SATC Software Quality Model is shown in Table 2. The table shows all of the goals,
attributes, and metrics in the model. Each goal has attributes, and each attribute has associated
metrics. There are a very large number of goals, attributes, and metrics that could have been
chosen for the SATC model. The specific set of goals was chosen because it supports the
questions the project manager asks. The attributes were chosen because they define the goals and
are related to risks. The metrics that are related to each attribute are computable from data that is
collectable at reasonable cost from a software development project. The SATC had the objective
that the attributes and metrics form an orthogonal set - that is, each attribute and metric appears
only once in the model. The SATC also had the objective that metrics should be based on
objective data collected from the processes and products and not on assessments by experts.

9

GOALS ATTRIBUTES METRICS

Requirements Quality Ambiguity Number of Weak Phrases
Number of Optional Phrases

Completeness Number of TBDs/TBAs
Understandability Document Structure

Readability Index
Volatility Count of changes / Count of

requirements
Life cycle stage when change
is made

Tracability Number of software
requirements not traced to
system requirements
Number of software
requirements not traced to
code and tests

Product(Code)Quality Structure/Architecture Logic complexity
GOTO usage
Size

Maintainability Correlation of
complexity/size

Reusability Correlation of
complexity/size

Internal Documentation Comment Percentage
External Documentation Readability Index

Implementation
Effectivity

Resource Usage Staff hours spent on life cycle
activities

Completion Rates Task completions
Planned task completions

Testing Effectivity Correctness Errors and criticality
Time of finding of errors
Time of error fixes
Code Location of fault

Table 2: SATC Software Quality Model

10

6.1 Requirements Quality and Risk

The objectives for this first goal are complete, unambiguous, and understandable requirements
document, the stabilization of requirements as quickly as possible, and the traceability of all
requirements from their source to the software requirements document and then through design
and implementation and test. The associated attributes are:

• Ambiguity - Requirements with potential multiple meanings.
• Completeness - Items left to be specified.
• Understandability - The readability of the document.
• Requirement Volatility - The rate and time within the life cycle changes are made to the

requirements.
• Tracability - The tracability of the requirements upward to higher level documents and

downward to code and tests.

Software requirements define the required functional requirements (what the software must do),
performance requirements (how many and how fast) and interface requirements (with what, how,
and with whom the software must interact). These requirements go through an iterative
evolutionary process, clarifying concepts and adding additional levels of details at each iteration.
If requirements are ambiguous, incomplete, or difficult to understand, the risk of an unsatisfactory
final product is increased. Towards the end of the requirements phase, the requirements should
stabilize with respect to additions, deletions and changes.

6.1.1 Requirements Quality Attributes and Metrics

6.1.1.1 Ambiguity

Ambiguous requirements are those that may have multiple meanings or those that leave to the
developer the decision weather or not to implement a requirement. There are two metrics used to
evaluate the ambiguity of the requirements document: the number of weak phases and the
number of optional phrases. Weak phrases, shown in Table 3, are not concrete, leave room for
interpretation and inconsistencies and are difficult to verify. Optional phrases seem to leave it to
the developer’s discretion whether or not to include a feature.

11

Weak Phrases Options

adequate can
as appropriate may
as applicable optionally
but not limited to
normal
if practical
timely
as a minimum

Table 3: Weak and Optional Phrases

Ambiguity is computed as the sum of the count of weak phrases and the count of optional phrases
in the requirements document.

6.1.1.2 Completeness

If the requirements document is complete, it will have all of the requirements specified in adequate
detail to allow design and implementation to proceed. The metrics used to evaluate completeness
are a count of the TBA (to be added) and TBD (to be determined) acronyms used in the
document. These acronyms are the most often used to indicate that a portion of the requirements
must be supplied at some future time.

6.1.1.3 Understandabililty

The attribute of understandably relates to the ability of the developers to understand clearly what
is met by the requirements document. The SATC is currently looking for good ways to
automatically evaluate understandability. At this time we are looking at two metrics, one based
on numbering structure and a second based on readability evaluations.

The width and breadth of the document’s numbering structure provides an indication of extent
that the requirements have been organized and the amount of detail provided. Generally, it seems
that a wider and deeper numbering structure indicates a better organized document. Some
research indicates that readability index of the requirements document is also an indicator of the
quality. The Flesh-Kincaid Readability Index seems to have the highest correlation with actual
human reaction to a requirements document.

The two metrics currently under consideration are difficult to verify as having a significant impact
on the risk of using the document and therefore the attribute of understandability is not heavily
used in evaluating overall requirements quality.

12

6.1.1.4 Volatility

A volatile requirements document is one that is changed frequently. The impact of changes to the
requirements increases as one gets closer to the time when the software is to be released. The
metrics for volatility are then the percentage of requirements changed in a given time period,
computed as number of requirements in the changes to the document divided by the base count of
requirements. The changes to be assessed come from the project configuration management
system if the requirements document is under CM. If not, the changes must be located by
comparisons of successive versions of the document itself.

To evaluate the number of change to the requirements, a base count of the number of
requirements (a “size” measure) specified in the document is necessary. While most requirements
documents use some sort of numbering system, it is readily apparent when reading a requirements
document that the count of numbers is not a good count of the number of requirements, since
many numbered items contain multiple requirements. Our initial work in identifying the number
of requirements within a document used a count of the number of times the word “shall”
appeared. This is the legally binding term that is expected in the requirement documents. The
SATC research, however, has identified a list of 7 additional words or phrases that often appear in
the requirement documents in place of the “shall” and usually indicate requirements.

Documents also use list structures that are introduced by some type of a continuation indicator.
This use of continuations affects the count of actual requirements since they are followed by a list
of requirements. Table 4 lists the imperatives and continuation phrases.

Imperatives Continuations
shall below:
must as follows:
will following:
required listed:
responsible for in particular:
should support:
are to :
are applicable

Table 4: Imperatives and Continuations

Thus the count of requirements is the number of imperatives, plus the number of items after
continuations. This count is applied to both the base document and to the changes.

6.1.1.5 Tracability

Software requirements must be derived from system requirements and be traceable to the system
requirements to assure that the software developed is going to work properly in the system

13

setting. The software requirements must also be traceable to the implementing design and code,
to ensure that they are in fact part of the software. They must be traceable to tests to ensure that
they have been validated and verified. There are two metrics for tracability, the number of
requirements not traced to higher level requirements and the number not traced to code and tests.
 To compute these metrics requires a trace matrix which is to contain the trace information. A
tool to help with upward tracing is not yet available, so only downward tracing is now done.

6.1.2 Requirements Risk

It is generally accepted that poorly written, rapidly changing requirements are a principal source
of project risk (and indeed, of project failure). The SATC is working on methods to measure
requirements document quality in much the same way that code quality is measured, that is, by
measuring characteristics of the document itself. This measurement philosophy suffers from the
problem that a well written document may still have the wrong requirements. However, it does
allow an objective evaluation of the document itself. The metrics for ambiguity - the count of
weak phrases and optional phrases in the requirements document do seem to result in confusion
and the need to take actions to resolve the questions raised.

Volatility is an important factor in risk, and extensive measures are often taken to reduce its
impact. The later in the life cycle changes are made to requirements, the resources takes to
implement them. Late requirement changes may also cause a ripple effect, causing additional
changes in associated areas. The earlier in the life cycle the requirements stabilize, the less the
risk, as shown in Figure 3. It is the SATC experience that the traditional curve for the impact of
errors can be used for the impact of requirements changes.

Risk

High

$$$
Level Moderate

$$$
Low

$$$
 Requirements Design Implementation Test

Figure 3: Phase Risk of Requirement Change

Overall assessment of requirements risk has to blend the impact of all of the requirements metrics.
 To reduce risk, specific requirements that are ambiguous or that contain TBAs or TBDs can be
identified and revised. It should be noted that requirements risk must be measured throughout the
life cycle.

14

6.2 Product Quality and Risk

An important objective of a software development project is to develop code and documentation
that will meeting the project’s “ility” requirements. The specific attributes measured are as
follows.

• Structure/Architecture - The evaluation of the constructs within a module to identify
possible error-prone modules and to indicate potential problems in usability and
maintainability.

• Reuse - The suitability of the software for reuse in a different context or application.
• Maintainability - The suitability of the software for ease of locating and fixing a fault in the

program.
• Documentation - The adequacy of internal code documentation and external

documentation.

6.2.1 Product Quality Attributes and Metrics

6.2.1.1 Structure/Architecture, Reuse and Maintainability

The attributes of Structure/Architecture, Reuse and Maintainability use the same metrics for
evaluation, but with different emphasis. The three areas of metrics applied here are complexity,
size, and the correlation of module complexity with size.

Complexity Measurements

It is generally accepted that modules with higher complexities are more difficult to understand and
have a higher probability of defects than modules with smaller values. Thus complexity has a
direct impact on overall quality and specifically on maintainability and reusability. Projects
developing code designed for reuse should be even more concerned with complexity since it may
later be found to be more expedient to rewrite highly complex modules than to reuse them.

There are many different types of complexity measurements, for example:

Logical (Cyclomatic) Complexity: Number of linearly independent test paths
Data Complexity: Data types and parameter passing
Calling Complexity: Calls to and from modules
GOTO Usage: Count of number of GOTO statements
Nesting Levels: Depth of nesting a conditional statement within a conditional

statement.

15

While the SATC computes and reports all of the above, the two that are the most effective
measures are Logical (cyclomatic) Complexity and GOTO use.

Logical (Cyclomatic) Complexity - The most common measure of the logic of a program is the
cyclomatic complexity (v(G)) that was proposed by McCabe. This metric measures the number
of linearly independent paths through a program, which in turn relates to the testability and
maintainability of the program.

A modified or extended cyclomatic complexity is the same as cyclomatic complexity except that,
in addition, each logical operator (such as and or or) within a logical statements (such as an if or
while statement) adds an additional point to the complexity value. Modified or extended
cyclomatic complexity will produce the highest complexity measurement for the modules.

GOTO Usage - GOTO usage generally increases the complexity of a program because it disrupts
the intended or normal structured flow of the program through the application of an unconditional
branching instruction. The use of large number of GOTOs is a typical cause of producing
unreadable programs with “spaghetti code”. Since the GOTO structure is available (even in C
and C++), and some programmers from the FORTRAN era of programming still use it with
abundance, a high count of GOTOs generally indicates lower quality code.

Size Measurements

One of the oldest and most common forms of software measurement is size. There are many
possibilities for representing size, but we will discuss only some common ways of counting lines.
Types of line counts include lines of code, non-comment non-blank source lines of code, and
executable statements.

Line of Code (LOC) - A line of code is any line of program test, regardless of the purpose or
number of statements or fragments of statements on the line. This specifically includes all lines
containing program headers, declarations, and executable and non-executable statements. All
other forms of line counts are a subset of this count.

Non-comment Non-blank (Source lines of code - SLOC) - A line of code that is not a comment
line or a blank line. The presence of a comment on a line with an executable statement does not
preclude counting the line; the comment is ignored.

Executable Statements (EXEC) - This is a count of the number of executable statement regardless
of the number of physical lines. A language delimiter, such as a semicolon in C, is usually used as
an indicator.

Size of modules is a quality indicator. General industry standards suggest that 50 to 100 lines is
the maximum size that any module should attain; larger modules tend to be difficult to understand
and thus lower in maintainability and reusability.

Correlation of Complexity and Size

16

While both size and complexity are useful metrics, the correlation of the two produces even more
information. The SATC has found that much of the code produced at GSFC has a linear
relationship between complexity and size, such that the complexity of a “normal” module can be
predicted by its size. Thus a reduction in size will reduce the complexity. The use of this
correlation is important in risk determination and will be discussed in section 6.2.2

6.2.1.2 Internal Documentation

Documentation is the description of the content of the code. Documentation can be in the forms
of manuals external to the code, or comments within the code itself. The metric recommended for
this attribute is the comments within the code since external documentation is often not available
or not used when changing source code. Comments within the code are readily available and the
primary source of information when making changes to the code. Many organizations have
specific guidelines for what should be contained in the commented header section of each code
module including dates and changes that allows for segment error tracking. Commenting within
the actual body of the code is often not specified, but critical for understanding.

In counting the number of comments within the body of the code, both on-line and stand-alone
comments must be counted since the type of commenting often depends on the preference of the
programmer. On-line comments are contained on a line with an executable statement and many
code analysis tools neglect to count them, skewing the comment percentage. Stand-alone
comments are on a line by themselves, such as in header code and are very easy to identify. Some
code analysis tools also count comment words to assist in identifying blank comment lines that
serve as spacing but add nothing to the understanding of the program.

Comment percentage is calculated by dividing the number of comments by the total lines of code
less the blank lines (# comments/(total lines of code - blank lines)).

6.2.1.3 External Documentation

At this time, the only measure of quality of external documentation used by the SATC is the
readability indices, as discussed under requirements.

6.2.2 Product Quality Risk

While poor quality of any product is a risk to the specific objectives of the project, some of the
best measures of risk come from correlations of the base metrics. The diagram in Figure 4 is to be
overlaid on a scatter plot of all of the code modules in a program or segment of the system
software. The diagram, when completed, identifies the risks to correctness and, especially,
maintainability and reusability based on size and complexity. The risk assigned to the areas in the
diagram are based on the SATC’s experience. The diagram’s values are used to show risk for
maintainability by the number of modules in the higher risk areas. Lower values for complexity

17

and size would be used to redefine the risk areas for reusability since the candidates for reusability
have both upper and lower guidelines.

100

90

80

Extended

70

Cyclomatic

60

Complexity

50

40

30

20

10

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

 Executable Statements

NONE (0)

MODERATE (3)

LOW (1)

LOW -
MODERATE (2)

MODERATE -
HIGH (4)

HIGH (5)

VERY HIGH (6)

Figure 4: Module risk areas

6.3 Implementation Effectivity and Risk

The objective of implementation effectivity is to maximize the effectiveness of resources within
the project scheduled activities. The attributes of this goal are:

• Resource use - The extent resource usage correlates to the appropriate phase of the
project.

• Completion Rates - progress made in completing items such as peer reviews, or turnover
of completed modules to CM.

6.3.1 Implementation Effectivity Attributes and Metrics

6.3.1.1 Resource Use

18

The resource metric recommended is personnel hours devoted to a set of life cycle activities. The
metrics use resource data as a measure of the types of activities that are being done at any specific
point in the life cycle. To the extent that those activities do not match the expected or planned
activities, an element of risk may have been identified. For example, work on prior phase
activities during the current phase is a risk indicator. The measures collected are staff hours spent
on a list of activities that is tailored for the project (and may have to change as the project
progresses). Key activities that should be measured include: requirements analysis, coding,
testing, corrective action, training, etc.

6.3.1.2 Completion Rates

Completion rates of tasks and product components are a good indicator of risk that a project will
or will not be able to provide products on the needed schedule. Completion rates can be
measured, and if a detailed schedule is available, completions can be compared to the schedule to
provide planned versus actual charts. Completion rates and planned versus actual charts are
usually thought of as the responsibility of the administrative support staff in a project rather than
of the metrics program. If a good schedule and completion measurement program is underway,
that division of labor can be maintained. However, a complete picture should be available to the
project manager, and, for example, charts and measures of completion of peer reviews, the
progress of modules through unit test and the completion rate of tests should be kept and
displayed. This, combined with the resource measures, gives a good picture of what is going on
and the impact of the carryover of prior phase activities.

It should be emphasized that resource and completion rate data must not be allowed to be used
to measure productivity of development teams or individuals. If individuals feel they are being
measured by the metrics, the whole process will collapse. It has been demonstrated over and over
again that if the development staff feels that individuals are being measured the staff will cease to
cooperate with the metrics program, and indeed are likely to actively sabotage it.

6.3.2 Implementation Effectivity Risk

An example of the risks that can be determined from the metrics of resource use is based on the
appropriateness of the tasks to which resources are being applied at a given time during the life
cycle. If significant effort is being expended on requirements activities during the design phase (or
worse, during the implementation phase), there is significant risk that the project will not be able
to meet its schedule objective.

As an example of the use of completion rate data in determining risks, the completion rate of tests
can be used to estimate the risk of competing all tests on time. The risk is measured by use of test
report data. Table 5 is an example of data that might be compiled from the test data and used for
projecting testing results for the next 3 months of testing. Using this information, a project
manager might conclude that if all tests must be passed by the end of the eighth month, this
project is at high risk.

19

Test
Month

Tests
Run

Test
Passed

Tests
Remain

Req
Tested

Req
Passed

Req
Remain

Mod
Tested

Mod
Passed

Mod
Remain

1 5 4 1 15 12 3 34 29 5
2 8 6 2 25 17 8 50 37 13
3 12 6 6 31 17 14 68 40 28
4 15 7 8 51 21 30 102 39 63
5 21 11 10 62 30 32 138 61 77
6 26 13 13 70 32 38 168 69 99
7 32 16 16 97 45 52 233 96 137
8 35 18 17 95 43 52 220 91 129

Projections

Table 5: Sample Test Data

6.4 Testing Effectivity and Risk

The objectives for effective testing is to locate and repair faults in the software, to identify error-
prone software, and to complete testing on schedule with sufficient faults found and repaired that
the software will operate “well enough” when it is put into operation. The attribute measured is
Correctness.

Once code has been generated and gone through Unit testing, formal testing - System,
Integration, and Acceptance Testing - begins. This testing may include the end users, especially in
Acceptance Testing. During formal testing, all software modules are integrated into a cohesive
whole and a series of system integration and validation tests are conducted. The purpose of this
testing is to find errors which normally result from unanticipated interactions between subsystems
and components. It is also concerned with validating that the overall system provides functions
specified in the requirements and that the dynamic characteristics of the system match those
required by the system procurer. Formal System testing is actually a series of different tests
whose primary purpose is to fully exercise the system.

6.4.1 Testing Effectivity Attributes and Metrics

6.4.1.1 Correctness

Correctness is defined as the extent the code fulfills specifications. One implication is that the
software must be error free. Errors are located by inspections and other peer reviews, by unit
testing, and by integration and system testing. Most GSFC projects do not use inspections, and
do not record errors found during unit testing. This attribute can only be measured during system
level tests and therefore is used as part of the test effectiveness goal.

20

The correctness metrics are shown in Table 6.

Date detected
Date closed
Criticality
Test #
Origin of defect
Code affected by closure

Table 6: Error Information

A cumulative error distribution, as shown in Figure 5, is typical of the rate of finding errors in a
test situation.

Cumulative Error Curve

0

50

100

150

200

250

0 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

25
5

Time

C
u

m
u

la
ti

ve
 E

rr
o

r
C

o
u

n
t

Figure 5: Typical Rate for Locating Errors

The SATC has developed a model that uses the typical error curve equation and does a curve fit
with the error data from testing. After the projections have settled down (about a third of the way
through the test process), the fitted curve can be used to predict the total number of errors that
will be found and the schedule resource needed to find them. We have also have had some
success in predicting the total number of errors by criticality category.

Correctness is reported as the number of errors found and, after the model has settled down, the
expected total number of errors.

21

6.4.2 Testing Effectivity Risk

The metrics for correctness lend themselves to a number of risk projections. If the project has
quantified the percentage of the errors that are to be found before the software is accepted, the
model can be used to project when that will happen, and the time at which it will occur. If the
time is significantly after the time at which the schedule requires the software to be available, then
risk is high.

Another risk determination can be done by looking at the code modules or sub-systems in which
the errors occur. Segments of code with more than the average number of errors may well need
another look to see if re-engineering should be considered. See section 7.0 for more on this
subject. Additionally, the time to fix errors should be tracked. If this metric is increasing, then a
threat to correctness and to schedule exists and should be pointed out to the project.

Finally, the location of faults that caused high criticality errors should be tracked. A
concentration of them in a segment of code indicates a risk that the requirements are not well
understood, or that the design is not suitable.

7.0 Multi - Metric Risk Evaluations

In addition to the risks that can be determined and classified based on the metrics collected for a
specific goal, some risk determinations can be improved by consideration of metrics from another
goal. For example, high requirements volatility can not only be measured by a count of
requirements changes, but by the amount of staff resources being spent on requirements after the
end of the requirements analysis phase of the life cycle. This data is available as a metric
supporting Goal 3. An interesting metric is the amount of effort spent on the average change,
which can be computed by dividing the total changes in some period into the total resources spent
on requirements analysis during the period.

Another multiple metric risk determination can be done by using the risk ranking for modules
based on their size and complexity, from Figure 4, and adding consideration of the number and
criticality of errors found in the modules. As is obvious, modules with high values in all areas are
those that should be examined for re-engineering.

The SATC has found that one of the parameters in the curve fit to the cumulative error curve (see
Figure 5) is related to test resources. Our current interpretation of this resource is staff resources,
and have gotten good results by constraining the solution to the error curve to a measure of staff,
gained from the resource metrics in Goal 2. Given this, new error curve solutions can be worked
out if the project proposes to change the test resources (usually to try to speed up a test process
that is falling behind).

22

If a project is in the test phase, and metrics from product quality and test effectivity are available,
the can be used to classify the remaining project risk. Using the risk depiction method shown in
Figure 2, the risk presentation to the project might look like Figure 6.

Testing
 Subsystem 1 Subsystem 2 Integration

Reusability
Risks Correctness

Schedule $$$
Maintain.

Low
Moderate

$$$ High

Current Status => Conclusion Subsystem 1 Testing

Risk Estimation at conclusion on Integration Testing:

Reliablity Moderate

Correctness Low -> Moderate

Schedule High

Maintainability Low

 Figure 6: Goal Presentation

This aspect of the use of metrics is currently being examined by the SATC. We expect some
significant new risk determinations to arise from this combined use of the metrics.

8.0 Summary

The Software Assurance Technology Center has applied some of the concepts from the
theoretical models of software quality to develop a unique model that fits the needs of project
managers in the NASA and GSFC environment.

• The model is dynamic, not static, in the fact that it allows the production of multiple snapshots

of project status across the development. The data is used to make projections about specific
project risks at project milestones.

• The model uses a broad range of measures, since it contains goals, attributes, and metrics for

both software products and development processes.

23

• The model is comprehensive, starting with specifying goals through presenting the results. It is
also applicable across the development life cycle by adapting the goals to the life cycle phase
based on the project’s specific objectives. The Model’s metrics are derived based on aspects
of the attributes that answer questions of the project managers. The model includes analysis
guidelines for the data collected.

9.0 Future Work

Currently, working with the SATC, software managers and quality assurance engineers are
starting to budget for data collection and software metric analysis. Significant effort is being spent
on methods to use the metrics to forecast the values of the selected goals and attributes forward
to project milestones such as delivery of the software.

Metrics introduced by the SATC, especially those relating to requirements quality need to be
validated, and a set of higher level design quality metrics is needed to supplement those done at
the code level. Our long term objective is to be able to establish a numerical metric scale for
assessment of all of the metrics that affect software quality.

24

References And Related Material

[1] Banker, R., Datar, S., Kemerer, C., Zweig, D., “Software Complexity and Maintenance
Costs”, Communications of the ACM, November, 1993, pp. 81-93.

[2] Boehm, B., Software Risk Management, IEEE Computer Society Press, CA, 1989.

[3] Dromey, R.Geoff, “A Model for Software Product Quality”, IEEE Transactions on
Software Engineering, February, 1995, pp. 146-162.

[4] Garvin, D., “What Does ‘Product Quality’ Really Mean?” Sloan Management Review,
Fall 1984, pp 25-45

[5] Gillies, Alan C., Software Quality, Theory and Management, Chapman & Hall, 1992, pp.
19-40.

[6] IEEE Standard for a Software Quality Metrics Methodology, IEEE Std. 1061-1992,
1992.

[7] Kitchenham, B., and Pfleeger, S., “Software Quality: The Elusive Target” IEEE Software,
January 1996, pp 12-21

[8] Kitchenham, B., Walker, J., “A Quantitative Approach to Monitoring Software
Development, Software Engineering Journal, January, 1989.

25

Lawrence E. Hyatt

Mr. Hyatt is a member of the Systems Reliability and Safety Office at NASA’s Goddard Space
Flight Center where he is responsible for the development of software implementation policy and
requirements. He founded and leads the Software Assurance Technology Center, which is
dedicated to making measured improvements in software developed for GSFC and NASA.

Mr. Hyatt has over 35 years experience in software development and assurance, 25 with the
government at GSFC and at NOAA. Early in his career, while with IBM Federal Systems
Division, he managed the contract support staff that developed science data analysis software for
GSFC space scientists. He then moved to GSFC, where he was responsible for the installation
and management of the first large scale IBM System 360 at GSFC. At NOAA, he was awarded
the Department of Commerce Silver Medal for his management of the development of the science
ground system for the first TIROS-N Spacecraft. He then headed the Satellite Service
Applications Division, which developed and implemented new uses for meteorological satellite
data in weather forecasting. Moving back to NASA/GSFC, Mr. Hyatt developed GSFC’s initial
programs and policies in software assurance and was active in the development of similar
programs for wider agency use. For this he was awarded the NASA Exceptional Service Medal
in 1990.

He founded the SATC in 1992 as a center of excellence in software assurance. The SATC carries
on a program of research and development in software assurance, develops software assurance
guidance and standards, and assists GSFC and NASA software development projects and
organizations in improving software processes and products.

Contact: Larry Hyatt
GSFC
Code 302, Bld 6
Greenbelt, MD 20771

301-286-7475 (voice)
LHyatt@gsfc.nasa.gov

26

Linda H. Rosenberg, Ph.D.

Dr. Rosenberg is an Engineering Section Head at Unisys Government Systems in Lanham, MD.
She is contracted to manage the Software Assurance Technology Center (SATC) through the
System Reliability and Safety Office in the Flight Assurance Division at Goddard Space Flight
Center, NASA, in Greenbelt, MD. The SATC has four primary responsibilities: Metrics,
Standards and Guidance, IV&V, and Outreach programs. Although she oversees all work areas
of the SATC, Dr. Rosenberg's area of expertise is metrics. She is responsible for overseeing
metric programs to establish a basis for numerical guidelines and standards for software
developed at NASA, to investigate the role of metrics in risk assessment and management of
software projects, and to work with project managers to use metrics in the evaluation of the
quality of their software. As part of the SATC outreach program, Dr. Rosenberg has presented
metrics/quality assurance tutorials at GSFC, and IEEE and ACM conferences.

Immediately prior to this assignment, Dr. Rosenberg was an Assistant Professor in the
Mathematics/Computer Science Department at Goucher College in Towson, MD. Her
responsibilities included the development of upper level computer science courses in accordance
with the recommendations of the ACM/IEEE-CS Joint Curriculum Task Force, and the advisor
for computer science majors.

Dr. Rosenberg's work has encompassed many areas of Software Engineering. In addition to
metrics, she has worked in the areas of hypertext, specification languages, and user interfaces.
Dr. Rosenberg holds a Ph.D. in Computer Science from the University of Maryland, an M.E.S. in
Computer Science from Loyola College, and a B.S. in Mathematics from Towson State
University. She is a member of Electrical and Electronic Engineers (IEEE), the IEEE Computer
Society, the Association for Computing Machinery (ACM) and Upsilon Pi Epsilon.

Contact: Dr. Linda Rosenberg
GSFC
Code 300.1, Bld 6
Greenbelt, MD 20771

301-286-0087 (voice)
linda.rosenberg@gsfc.nasa.gov

